
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
Fluent

Collaborative Audit Prepared For: Fluent
Lead Security Expert(s): TessKimy

vinica_boy
Date Audited: December 10 - December 12, 2025

1

https://github.com/DemoreXTess
https://github.com/spdimov

Introduction
Fluent is the first blended execution network where EVM, WASM, and SVM contracts talk
to each other like they're written in the same language. No bridges. No friction. Just
pure expressivity.

Scope
Repository: fluentlabs-xyz/fluent-nft-sale

Audited Commit: 51bde412b20d754421068b7b77d66b31b3bb8fee

Final Commit: 3025dd04ec8b5a7b967c9c5f26d9a90e2ee5a97c

Files:

• src/FluentNFTSale.sol

• src/interface/IFluentNFTSale.sol

Final Commit Hash
3025dd04ec8b5a7b967c9c5f26d9a90e2ee5a97c

Findings
Each issue has an assigned severity:

• High issues are directly exploitable security vulnerabilities that need to be fixed.

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.

Issues Found

High Medium Low/Info

0 0 4

2

https://github.com/fluentlabs-xyz/fluent-nft-sale/tree/3025dd04ec8b5a7b967c9c5f26d9a90e2ee5a97c

Issues Not Fixed and Not Acknowledged

High Medium Low/Info

0 0 0

3

Issue L-1: getMintLimit return values can be opti-
mized for edgecases [RESOLVED]
Source: https://github.com/sherlock-audit/2025-12-fluent-dec-10th/issues/3

Summary
getMintLimit function returns 0 value for unlimited case and it always returns tier mint
limits in other cases. These return values don't account MAX_SUPPLY. It can be
optimized with max supply value because it cannot pass that limit anyway.

Code Snippet
https://github.com/sherlock-audit/2025-12-fluent-dec-10th/blob/e5a4c53522ec915a32
b9787fe02fac96c556b272/fluent-nft-sale/src/FluentNFTSale.sol#L567-L580

Tool Used
Manual Review

Recommendation
Consider returning max supply minus total minted value for some cases:

function getMintLimit(uint8 tier) external view returns (uint8) {
require(tier > 0 && tier <= NUM_TIERS, InvalidTier());
MainStorage storage $ = _getStorage();

uint8 maxActive = getMaxActiveStage();
if (maxActive == 0) return 0;

StageType stageType = $.stages[maxActive].stageType;
if (stageType == StageType.Public || tier > MAX_PRESALE_TIER) {

return MAX_SUPPLY - $.totalMinted; // limited by max supply cap
}
return $.presaleTierConfigs[tier].mintLimit > MAX_SUPPLY - $.totalMinted ?

MAX_SUPPLY - $.totalMinted : $.presaleTierConfigs[tier].mintLimit;↪→

}

Discussion
d1r1

Fixed. Return type changed to uint64 to support values up to MAX_SUPPLY (5000).

4

https://github.com/sherlock-audit/2025-12-fluent-dec-10th/issues/3
https://github.com/sherlock-audit/2025-12-fluent-dec-10th/blob/e5a4c53522ec915a32b9787fe02fac96c556b272/fluent-nft-sale/src/FluentNFTSale.sol#L567-L580
https://github.com/sherlock-audit/2025-12-fluent-dec-10th/blob/e5a4c53522ec915a32b9787fe02fac96c556b272/fluent-nft-sale/src/FluentNFTSale.sol#L567-L580
https://github.com/fluentlabs-xyz/fluent-nft-sale/pull/1/changes/7ce1f4cd4c41208b46683f6f8d2407d88a8a608f

Issue L-2: # Redundant handling of mint recipient
being EOA/contract [RESOLVED]
Source: https://github.com/sherlock-audit/2025-12-fluent-dec-10th/issues/4

Summary
The logic for minting in FluentNFTSale::_executeMint() explicitly handles whether to use
mint() or safeMint() for the NFT:

// Mint tokens (use _mint for EOA, _safeMint for contracts)
if (recipient.code.length == 0) {

for (uint256 id = startTokenId; id < nextId;) {
_mint(recipient, id);
unchecked {

++id;
}

}
} else {

for (uint256 id = startTokenId; id < nextId;) {
_safeMint(recipient, id);
unchecked {

++id;
}

}
}

There is no need to do that and safeMint() can always be used as it internally does the
check and execute onERC721Received check only for contracts (addresses with
code.lenght > 0).

Recommendation
Consider always using safeMint().

Discussion
d1r1

fixed

5

https://github.com/sherlock-audit/2025-12-fluent-dec-10th/issues/4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/53c2c64cf259b8f68c5a0833d55cbd446786c8fc/contracts/token/ERC721/utils/ERC721Utils.sol#L25C2-L50C2
https://github.com/fluentlabs-xyz/fluent-nft-sale/pull/1/changes/66872bcd19c50d6d080b9568b93dc40f8f880c25

Issue L-3: Redundant two loops can be combined in
a single one [RESOLVED]
Source: https://github.com/sherlock-audit/2025-12-fluent-dec-10th/issues/5

Summary
The logic for minting in FluentNFTSale::_executeMint() have two loops to handle the
accounting for token tiers and actual minting.

for (uint8 i = 0; i < count;) {
$.tokenTiers[nextId] = tier;
unchecked {

++nextId;
++i;

}
}
$.nextTokenId = nextId;

// Mint tokens (use _mint for EOA, _safeMint for contracts)
if (recipient.code.length == 0) {

for (uint256 id = startTokenId; id < nextId;) {
_mint(recipient, id);
unchecked {

++id;
}

}
} else {

for (uint256 id = startTokenId; id < nextId;) {
_safeMint(recipient, id);
unchecked {

++id;
}

}
}

Loops can be combined in a single one which does both - save the token tier and mint in
the same traversal.

Recommendation
Consider refactoring to:

for (uint8 i = 0; i < count;) {
$.tokenTiers[nextId] = tier;
_safeMint(recipient, nextId);

6

https://github.com/sherlock-audit/2025-12-fluent-dec-10th/issues/5

unchecked {
++nextId;
++i;

}
}
$.nextTokenId = nextId;

Discussion
d1r1

fixed

7

https://github.com/fluentlabs-xyz/fluent-nft-sale/pull/1/changes/66872bcd19c50d6d080b9568b93dc40f8f880c25

Issue L-4: Pausing public sale via pauseStagewould
allow users to mint NFTs with prices based on pre-
sale stages [RESOLVED]
Source: https://github.com/sherlock-audit/2025-12-fluent-dec-10th/issues/6

Summary
Pausing stage 4 (Public) via pauseStage() causes getMaxActiveStage() to return stage 3,
allowing users to mint NFTs at cheaper presale prices instead of public prices.

Vulnerability Detail
The getMaxActiveStage() function loops from stage 4 down to 1 and returns the first
active stage. When stage 4 is paused, it returns stage 3 (Presale), and pricing logic uses
this stage's type to determine prices.

Impact
Users can mint NFTs at presale prices (e.g., 0.2-0.4 ETH for tiers 1-3) instead of paying the
higher public price (0.5 ETH).

Code Snippet
https://github.com/sherlock-audit/2025-12-fluent-dec-10th/blob/e5a4c53522ec915a32
b9787fe02fac96c556b272/fluent-nft-sale/src/FluentNFTSale.sol#L224-L228

https://github.com/sherlock-audit/2025-12-fluent-dec-10th/blob/e5a4c53522ec915a32
b9787fe02fac96c556b272/fluent-nft-sale/src/FluentNFTSale.sol#L513-L521

Tool Used
Manual Review

Recommendation
Consider using pauseSale() in this case and document the behavior.

Discussion
d1r1

8

https://github.com/sherlock-audit/2025-12-fluent-dec-10th/issues/6
https://github.com/sherlock-audit/2025-12-fluent-dec-10th/blob/e5a4c53522ec915a32b9787fe02fac96c556b272/fluent-nft-sale/src/FluentNFTSale.sol#L224-L228
https://github.com/sherlock-audit/2025-12-fluent-dec-10th/blob/e5a4c53522ec915a32b9787fe02fac96c556b272/fluent-nft-sale/src/FluentNFTSale.sol#L224-L228
https://github.com/sherlock-audit/2025-12-fluent-dec-10th/blob/e5a4c53522ec915a32b9787fe02fac96c556b272/fluent-nft-sale/src/FluentNFTSale.sol#L513-L521
https://github.com/sherlock-audit/2025-12-fluent-dec-10th/blob/e5a4c53522ec915a32b9787fe02fac96c556b272/fluent-nft-sale/src/FluentNFTSale.sol#L513-L521

fixed

9

https://github.com/fluentlabs-xyz/fluent-nft-sale/pull/1/changes/3025dd04ec8b5a7b967c9c5f26d9a90e2ee5a97c

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

10

	Introduction
	Scope
	Final Commit Hash

	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged

	Issue L-1: getMintLimit return values can be optimized for edgecases [RESOLVED]
	Summary
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-2: # Redundant handling of mint recipient being EOA/contract [RESOLVED]
	Summary
	Recommendation
	Discussion

	Issue L-3: Redundant two loops can be combined in a single one [RESOLVED]
	Summary
	Recommendation
	Discussion

	Issue L-4: Pausing public sale via pauseStage would allow users to mint NFTs with prices based on presale stages [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Disclaimers

